Types of Anthroponics Systems

Like aquaponic and hydroponic systems, anthroponic systems can be made of different system components. The most common ones in aquaponics include Media Bed systems, Nutrient Film Technique (NFT) systems, Deep Water Culture(DWC) or Raft systems and hybrids containing two or more of these types. Unlike aquaponic systems however, anthroponic systems can be further broken down into two main systems:

  • urine-based anthroponics systems (u-anthroponics) and 
  • feces-based anthroponics systems (f-anthroponics).

While it may be possible for future anthroponic systems to combine both urine and feces in the same system, currently such system has not been devised.

Current constructed and idealized anthroponic systems are very similar in most of the system components to aquaponic systems, making them easy to understand by those knowledgeable of aquaponic systems.

Let’s start with analyzing a simplified diagram of a u-anthroponics system. Inputs are colored in yellow, the main system with recirculating water in a soilless environment is colored blue, and the output is colored green (click to zoom).

u-anthroponics

U-Anthroponic system overview

Unlike aquaponics, the main nutrient is human urine, which must be placed in a sealed container and aged until it is safe for used. The aged urine is then placed in the water reservoir or sump tank of the system, where the pump is located (remember, there is no fish tank in this system as there are no fish). The urine is diluted and converted into nutrient rich water after passing through the biofilter, where nitrifying bacteria convert the urine to plant fertilizer. The water is then recirculated over and over again, feeding the growing components of the system and allowing for plant growth, coupled with light.

F-anthroponics, to the best of my knowledge, have never been constructed or tested in real life. As I have envisioned them and discussed them in a r/anthroponics thread, they resemble aquaponic systems more since they incorporate fish and a relatively common fish food source: Black Soldier Fly Larvae (BSFL).You can see a f-anthroponics simplified diagram below. Again, inputs are colored in yellow, the main system with recirculating water in a soilless environment is colored blue, and the output is colored green (click to zoom).

 

f-anthroponics

 

F-Anthroponic system overview

Here, the feces are eaten by Black Soldier Fly Larvae which are frozen to kill any potential pathogens and then fed to the fish, with the following cycle resembling the well-known aquaponics nitrogen cycle.

In theory, this type of f-anthroponics should work. One major downside of using feces as a nutrient source is their handling, as they have a very uncomfortable smell and require strict safety measures. I believe the design of a system that minimizes direct human contact with feces and the harvested BSFL will be crucial in turning this type of anthroponics system into a viable and serious alternative.

Why Anthroponics?

Let’s recollect an all too familiar experience for most of us in the so called “developed” world.

You are sitting at your desk, browsing your computer. Suddently, that familiar feeling comes, distracting you from your work or your entertainment. You ignore it, at first, since there are more important things that require your attention. But the urge keeps on increasing, slowly, over time. Suddenly, it’s the only thing on your mind. You head to the bathroom and release a golden stream in your toilet. After you’re done cleaning, you press the magical button and you never have to think about it again.

Most people never bother to think about something as yucky as urine, since we have all been taught to just dispose of it in the appropriate places and ignore it. But the truth is that we are part of an ecosystem, and our outputs are part of an intricate web that connects trophic levels of organisms with soil, water and air resources. For this ecosystem, our urine is valuable and will be processed to feed other organisms in other levels, recycling the nutrients until they reach us again.

But in our cities, we have constructed a slightly different reality. Once we flush our urine down the toilet, we immediately dilute it with freshwater, a precious resource. Our urine will meet other wastewater streams which will contain feces and other fluids until it reaches a wastewater treatment plant. If your city has a combined sewer system (which means the stormwater runoff from rains is mixed with wastewater in the pipes), then your urine will be diluted even further.

Depending on the wastewater treatment plant capacity and technology, the sewage might just suffer a light treatment to meet municipal standards for discharge in a nearby stream, river, lake or ocean. Alternatively, the sewage might suffer further biological degradation and filtration to meet stricter standards. By-products of a wastewater treatment plant include sludge and treated water. The treated water is returned to the ecosystem, whereas sludge may be dried and used for compost and agricultural practices or digested and used for energy production.

Sounds like a good deal overall, right?

Nonetheless, most of us who study wastewater engineering know how expensive and energy intensive these processes can be. On top of that, many of these wastewater treatment plants provide a single point of failure network, making them particularly vulnerable to a sudden power failure, machine malfunction or overwhelming influent. The reason why conventional wastewater treatment is so expensive and energy intensive is due to the fact that some of the main processes’ goal is to separate solids and nutrients from the water, something that could have been easily prevented in the start of our urine journey!

This is why dry/composting toilets or separating toilets have been the topic of research over recent years, since they can supply a solution to the dillution issue, and they keep urine and feces separated for their potential different uses. On the other hand, they are limited in the user benefit they provide, since composting for example takes a considerable amount of time and “only” produces soil as a by-product.

However, most people are not interested in taking care of their waste simply out of the goodness of their hearts or because of environmental awareness, especially considering how unpleasant the smell can be. Even composting might take at best 3 months until you have an useful by-product, and might require too much space to handle daily waste flows.

Anthroponics may be able to provide a more viable alternative since it is a decentralized system which provides the user with a direct benefit: a crop which the user can consume, sell as a fresh produce or process into a product and sell. Anthroponics can be a sustainable way to grow food and fish, without the use of fossil-fuel based industrial fertilizers, while at the same time treating wastewater.

As anthroponic systems are pioneered and explored, their limitations will become clear. But for now, they warrant enough curiosity so that we can think and imagine how we can incorporate them in our apartments and households so we can create more resilient and sustainable agricultural production systems and wastewater treatment systems.

The journey begins…

Hi, my name is Henrique and I am fascinated about anthroponics!

The first time I heard about the concept was when I was about to start my Erasmus Internship in Sweden building aquaponic systems, which are pretty damn mind-blowing of themselves. The idea that you can grow plants in a soilless environment (hydroponics) is just mind-boggling for a city dweller such as me. The idea that you could also grow fish and use their waste (aquaculture) to grow these plants makes it even more incredible at just how adaptable and resilient life can be.

My coordinator, Louise Lundberg, and I had come across “peeponics” (using urine instead of fish in an aquaponics system) experiments on-line, particularly in webforums. We decided to give it ago since we both like challenges and we had some room in our budget/thesis to experiment. We succeeded in building a system which fed us with cucumbers, tomatoes, lettuce, herbs and strawberries using the nutrients from urine which would have been wasted if we had just flushed them down the toilet like most people do every day.

I heard the first use of anthroponics through a contact of Louise, Folke Günther, a former wastewater-engineer-now-turned-aquaponics-enthusiast. Since hydroponics essentially means “to put the water to work”, and aquaponics means “to put the fish to work”, it felt like a better term (anthro is a shorter version of anthropo which means human being) than peeponics. It could also be used for both types of human waste.

As fascinating and groundbreaking as this technology is, I was surprised at how little information I could find about it. The only information available was from backyard enthusiasts, and nowhere could I find any academic research on the subject. While my ego was boosted by effectively being the first person to study this in a university environment, I still feel disapointment at how aquaponic and anthroponic systems alike are largely ignored by most engineering faculties.

As a way to explore and expand the collective knowledge on this topic, I decided to start this blog and share as much information, opinions and research as I can find and create. I also started a subreddit (r/anthroponics) where I hope to gather a community of like-minded enthusiasts so we can help each other and expand the knowledge of this new technology.

So, join me in this “smelly” journey about nutrient recovery, growing crops sustainably and changing our perspective on waste!